Optimal Portfolio Using Factor Graphical Lasso

نویسندگان

چکیده

Abstract Graphical models are a powerful tool to estimate high-dimensional inverse covariance (precision) matrix, which has been applied for portfolio allocation problem. The assumption made by these is sparsity of the precision matrix. However, when stock returns driven common factors, such does not hold. We address this limitation and develop framework, Factor Lasso (FGL), integrates graphical with factor structure in context decomposing matrix into low-rank sparse components. Our theoretical results simulations show that FGL consistently estimates weights risk exposure also robust heavy-tailed distributions makes our method suitable financial applications. FGL-based portfolios shown exhibit superior performance over several prominent competitors including equal-weighted index empirical application S&P500 constituents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fused Multiple Graphical Lasso

In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the...

متن کامل

Pathway Graphical Lasso

Graphical models provide a rich framework for summarizing the dependencies among variables. The graphical lasso approach attempts to learn the structure of a Gaussian graphical model (GGM) by maximizing the log likelihood of the data, subject to an l1 penalty on the elements of the inverse co-variance matrix. Most algorithms for solving the graphical lasso problem do not scale to a very large n...

متن کامل

Discovering graphical Granger causality using the truncating lasso penalty

MOTIVATION Components of biological systems interact with each other in order to carry out vital cell functions. Such information can be used to improve estimation and inference, and to obtain better insights into the underlying cellular mechanisms. Discovering regulatory interactions among genes is therefore an important problem in systems biology. Whole-genome expression data over time provid...

متن کامل

Optimal Portfolio Selection using Regularization

The mean-variance principle of Markowitz (1952) for portfolio selection gives disappointing results once the mean and variance are replaced by their sample counterparts. The problem is ampli…ed when the number of assets is large and the sample covariance is singular or nearly singular. In this paper, we investigate four regularization techniques to stabilize the inverse of the covariance matrix...

متن کامل

Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso

Gaussian Graphical Models (GGMs) are popular tools for studying network structures. However, many modern applications such as gene network discovery and social interactions analysis often involve high-dimensional noisy data with outliers or heavier tails than the Gaussian distribution. In this paper, we propose the Trimmed Graphical Lasso for robust estimation of sparse GGMs. Our method guards ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Financial Econometrics

سال: 2023

ISSN: ['1479-8409', '1479-8417']

DOI: https://doi.org/10.1093/jjfinec/nbad011